All AlBridge

AlBridge Lecture 6

Classification!

quick

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide

White = 0 Red = 1

- Density
- pH
- Sulphates
- Alcohol

■ categorical label outputs are named "classes"

Classification!

quick

that's a lot

- Fixed acidity of features!
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol

■ categorical label outputs are named "classes"

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol

■ Linear models might not be the best in some cases

Decision

Trees

Decision Trees

Decision Trees

Can I afford it?

Decision Trees

Decision Trees

Can I afford it?

Is it comfortable?

Is it fashionable?

Decision Trees

Can I afford it?

Is it comfortable?

Is it fashionable?

Decision Trees

Decision Trees

Decision Trees

Decision Trees

Price	Comfort	Fashion	Purchased?
$\$ 70$	4	6	No
$\$ 120$	5	8	No
$\$ 20$	4	4	No
$\$ 60$	1	8	Yes
$\$ 60$	6	3	No
$\$ 80$	8	8	Yes

Decision Trees

Purchased?
No
No
No
Yes
No
Yes

Decision Trees

No	Yes
No	No
No	Yes

Decision Trees

```
No Yes
No No
No Yes
```


Decision Trees

Which one is a better split?
(when trying to automate Decision Trees)
No Yes
No No
No Yes
All no

Decision Trees

0

■ as a group becomes more homogeneous, its Gini Impurity decreases.

Decision Trees

■ as a group becomes more homogeneous, its Gini Impurity

- defreasegroups => 0 Gini Impurity => 100\% predictions

Decision Trees

Fraction of that one class Fraction of not that one
 in group class in the group
 $G=\sum_{i=1}^{c} P(i) \cdot(1-\stackrel{\downarrow}{P}(i)$

- Gini impurity measures the homogeneity in a

Decision Trees

Purchased?
No
No

No
Yes
No
Yes
0.5

Decision Trees

Purchased?
No
No
No
Yes

No
Yes
0.5
0.38
.
0.88

Decision Trees

we gotta do better than this, right?

Purchased?
No

No 0
No

Yes
No 0.44
Yes
0.44

Decision Trees

$$
\begin{array}{cc}
& \text { Purchased? } \\
& \text { No } \\
\text { just split } & \text { No } \\
\text { again! } & \text { No } \\
& \text { Yes } \\
& \text { No } 0.44 \\
& \text { Yes } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{array}
$$

Decision Trees

1. Make splits (using features and thresholds)
2. Calculate Gini impurities
3. Select the split that results in the lowest Gini impurity sum
4. If unhappy, just split again!
5. Repeat $1-4$ as much as needed
a hyperparameter

Decision Trees

diverse

What if we do it a lot?

Decision Trees

 Random Forest

Decision Trees

Random Forest

1. Make a lot of decision trees, on different portions of the data
2. For a new sample, run all of them
3. Combine their votes and take the majority

"split"

"split"

we need a more complex split
Support vector
machines!

Support Vector

Machines

Support Vector

Machines

Support Vector

 Machines

Support Vector

Machines

We gotta do better than this!

- a good split phaximizes distance between the split line and samples min(ohistance to line. over all noints)

Support Vector Machines

\min (distance to line, over all points) We want to make this big!

Support Vector Machines

\min (distance to line, over all points) We want to make this big!

Support Vector

Machines

min(distance to line, over all points) We want to make this big!

- support-vector machines are classifiers that divide data by class, aiming to create a margin that's as wide as possible.
- They can use non-linear functions

Internal Memo:

146 Hagley Road, Birmingham
Birmingham B3 3PJ
From the Desk of Mr. Jerry Smith Date: 13/01/14
Attn: Sir/Madam,
I seize this opportunity to extend my unalloyed compliments of the new season to you and your family hopping that this year will bring more joy, happiness and prosperity into your house hold.

I am certain that by the time you read this letter I might have already gone back to my country United Kingdom. I visited South Africa during the New Year period and during my stay, I used the opportunity to send you this letter believing that it will reach you in good state.

Internal Memo:

146 Hagley Road, Birmingham

Birmingham B3 3PJ

From the Desk of Mr. Jerry Smith Date: 13/01/14

Attn: Sir/Madam,
I seize this opportunity to extend my unalloyed compliments of the new season to you and your family hopping that this year will bring more joy, happiness and prosperity into your house hold.

I am certain that by the time you read this letter I might have already gone back to my country United Kingdom. I visited South Africa during the New Year period and during my stay, I used the opportunity to send you this letter believing that it will reach you in good state.

"unalloyed

complements"
dollars"
"relative dying of
cancer"

\longrightarrow | Spam |
| :--- |
| Spam |
| Spam |

IF we have this
"unalloyed
complements"
dollars"
"relative dying of cancer"
we get this
Spam
Spam
Spam

we get this IF we have this

we get this IF we have this

$A \mid R$

we get this IF we have this

AIR

- Is Spam
- "Nigerian Prince"
we get this IF we have this
snamlniaeriannrin.

we get this IF we have this

$P($ spam \mid nigerianprince $)$

high? Nigerian prince $\quad \longrightarrow$ spam likely
low? Nigerian prince $\quad \longrightarrow$ not spam

- conditional probabilities can be used as a
classifier!

Naïve Bayes

Naïve Bayes

Classifier

$P($ spam \mid nigerianprince, offer $)=\frac{P(\text { spam }) P(\text { nigerianprince } \mid \text { spam }) P(\text { offer } \mid \text { spam })}{P(\text { nigerianprince }) P(\text { offer })}$

- conditional probabilities can be used as a
- aladiditibr made this way, however, is "naïve" "naïve" when extended to multiple features

Naïve Bayes

Independence

Naïve Bayes

Independence

January $1^{\text {st }}$

50\%

50\%

January $2^{\text {nd }}$

50\%

Naïve Bayes

 Independence$$
\begin{gathered}
P\left(\text { Rain } \mid \text { January } 1^{\text {st }}\right) \\
=50 \%
\end{gathered}
$$

Naïve Bayes

 Independence
P(Rain | January $1^{\text {st }}$ AND Rain | January $\left.2^{\text {nd }}\right)=45 \%$
 Is NOT

$$
\begin{gathered}
P\left(\text { Rain | January } 1^{\text {st }}\right){ }^{*} P\left(\text { Rain } \mid \text { January } 2^{\text {nd }}\right) \\
=25 \%
\end{gathered}
$$

Buy? Don't buy?

K Nearest Neighbors

K Nearest Neighbors

K Nearest Neighbors

Five classifiers! That's a lot.

Let's get to the lab!

